Fast 3D Imaging os spine, Dendritic, and Neuronal Assemble in Behaving animals

Gergely Szalay, Linda Judak, Gergely Katona, Katalin Ocsai, Gabor Juhasz

Neuron 2016

Szalay et al, Neuron (2016)

Understanding neural computation requires methods that can simultaneously read out activity on both somatic and dendritic scales. As shown by Katona el al. AO point scanning can effectively record fluorescent signal from up to 1000 points from in vitro preparation or from anesthetized animal. But the maximal scanning rate is limited by the switching time of the AO deflectors. In this article presents a novel technology, 3D DRIFT AO scanning, which can extend each scanning point to small 3D lines, surfaces, or volume elements for flexible and fast imaging of complex structures simultaneously in multiple locations around our ROIs. The scanning abilities were demonstrated by fast 3D recording of over 150 dendritic spines with 3D lines, over 100 somata with squares and cubes, or multiple spiny dendritic segments with surface and volume elements. Also, when measuring from awake, behaving animals relatively big motion artifacts can occur caused by vessel pulsing, respiration or locomotion. Extending the ROIs by with maintained temporal resolution allows of line motion compensation and the elimination of most of the motion artifacts. All two-photon experiments were performed with Femto3D-AcoustoOpctic microscope.

Read the full article

Tags: szalay